Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nanomedicine ; 34: 102372, 2021 06.
Article in English | MEDLINE | ID: covidwho-1117330

ABSTRACT

The development of vaccines is a crucial response against the COVID-19 pandemic and innovative nanovaccines could increase the potential to address this remarkable challenge. In the present study a B cell epitope (S461-493) from the spike protein of SARS-CoV-2 was selected and its immunogenicity validated in sheep. This synthetic peptide was coupled to gold nanoparticles (AuNP) functionalized with SH-PEG-NH2 via glutaraldehyde-mediated coupling to obtain the AuNP-S461-493 candidate, which showed in s.c.-immunized mice a superior immunogenicity (IgG responses) when compared to soluble S461-493; and led to increased expression of relevant cytokines in splenocyte cultures. Interestingly, the response triggered by AuNP-S461-493 was similar in magnitude to that induced using a conventional strong adjuvant (Freund's adjuvant). This study provides a platform for the development of AuNP-based nanovaccines targeting specific SARS-CoV-2 epitopes.


Subject(s)
COVID-19 Vaccines , Epitopes, B-Lymphocyte , Gold , Immunogenicity, Vaccine , Metal Nanoparticles , Peptides , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/pharmacology , Gold/chemistry , Gold/pharmacology , HEK293 Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Peptides/chemical synthesis , Peptides/chemistry , Peptides/immunology , Peptides/pharmacology , Sheep , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/pharmacology
2.
Expert Rev Anti Infect Ther ; 18(9): 849-864, 2020 09.
Article in English | MEDLINE | ID: covidwho-612259

ABSTRACT

INTRODUCTION: The current COVID-19 pandemic caused by the SARS-CoV-2 virus demands the development of strategies not only to detect or inactivate the virus, but to treat it (therapeutically and prophylactically). COVID-19 is not only a critical threat for the population with risk factors, but also generates a dramatic economic impact in terms of morbidity and the overall interruption of economic activities. AREAS COVERED: Advanced materials are the basis of several technologies that could diminish the impact of COVID-19: biosensors might allow early virus detection, nanosized vaccines are powerful agents that could prevent viral infections, and nanosystems with antiviral activity could bind the virus for inactivation or destruction upon application of an external stimulus. Herein all these methods are discussed under the light of cutting-edge technologies and the previously reported prototypes targeting enveloped viruses similar to SARS-CoV-2. This analysis was derived from an extensive scientific literature search (including pubmed) performed on April 2020. EXPERT OPINION: Perspectives on how biosensors, vaccines, and antiviral nanosystems can be implemented to fight COVID-19 are envisioned; identifying the approaches that can be implemented in the short term and those that deserve long term research to cope with respiratory viruses-related pandemics in the future.


Subject(s)
Betacoronavirus , Coronavirus Infections , Nanostructures/therapeutic use , Nanotechnology/methods , Pandemics , Pneumonia, Viral , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , Biosensing Techniques/methods , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2 , Viral Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL